
 
 
 
 
 
 
 

DESIGN OF AN INTEGRATED ROBOT MANIPULATOR SIMULATOR FOR 
REMOTE LEARNING APPLICATIONS 

 
 

by 
 
 

Brendon J. Wilson 
 
 
 
 
 
 
 

A THESIS PROPOSAL SUBMITTED IN PARTIAL FULFILLMENT  OF THE 
REQUIREMENTS FOR THE DEGREE OF  

BACHELOR OF APPLIED SCIENCE 
In The School 

 
of 
 

Engineering Science 
 
 

© Brendon Wilson 1997 
SIMON FRASER UNIVERSITY 

September 30, 1997 
 
 
 
 
 

All rights reserved. This work may not be 
reproduced in whole or in part, by photocopy 

or other means, without the permission of the author.  



 ii

Abstract 
 
In response to rising equipment costs and reduced funding, the REMOTE (Really Exciting 
Manipulator Object Tele-learning Experience) project is investigating new methods of providing 
hands-on experience to students using tele-learning.  Tele-learning is a method of providing 
distance education using multimedia technologies via any combination of telephone, video-
conferencing, or Internet connections.  The purpose of this project is to create a Java 
application that enables students to explore robotics programming via interactive 
experimentation. 
 
This thesis project will develop a complete simulation application, extending work by Ron 
Racine and Scott Branden for ENSC 439.  The completed environment will feature a user 
interface that displays visual simulation feedback and allows users to edit, program, and debug 
simulation files.  An Internet connection to a remote server will enable users to test their 
completed programs on a real manipulator, and view the result using CU-See-Me Internet 
video software.  The application’s underlying simulation engine will control the internal 
representation and simulation of the robot manipulator. 
 
This project is of particular importance to future ENSC 439 classes, which will use the simulator 
to provide students with more access to robot programming experience at a lower cost.  To suit 
the purposes of ENSC 439, the software will be required to simulate a Scorbot ER III 
manipulator and interface via the Internet to the existing Scorbot manipulator available in the 
Engineering Science lab.  By careful design and implementation, the completed application 
should permit addition of supplemental features, allowing the application to suit the present and 
future demands of ENSC 439.  
 



 iii

Approval 
 
Name: 
 

Brendon Wilson 

Degree: 
 

Bachelor of Applied Science 

Title of Thesis: Design of an integrated robot manipulator simulator for 
remote learning applications 

  
 

 Dr. John Jones 
Director 
School of Engineering Science, SFU 

 
Examining Committee: 
 
Technical and Academic 
Supervisor: 

 

 Dr. John Dill 
Professor 
School of Engineering Science, SFU 

  
 

Committee Member:  
 Dr. Kamal Gupta 

Associate Professor 
School of Engineering Science, SFU 

  
 

Committee Member:  
 Dr. Brian Fisher 

Research Associate 
Center for Systems Science, SFU 

  
 

Communication Lecturer:  
 Steve Whitmore 

Communication Lecturer 
School of Engineering Science, SFU 

  
 Date Approved 



 iv

Table of Contents  
 

ABSTRACT......................................................................................................................................................................II 

APPROVAL ....................................................................................................................................................................III 

INTRODUCTION............................................................................................................................................................ 1 

OVERVIEW OF PROJECT REQUIREMENTS.......................................................................................................... 1 

DESIGN OF THE USER INTERFACE ..................................................................................................................................2 
INTEGRATION OF INTERACTIVE PROGRAMMING FEATURES....................................................................................3 
THE SIMULATION ENGINE ..............................................................................................................................................4 
ADDITION OF SERVER COMMUNICATIONS..................................................................................................................5 
SIMULATOR GENERALIZATION .....................................................................................................................................5 
USE OF THE JAVA PROGRAMMING LANGUAGE ............................................................................................................6 

PROJECT PLANNING HORIZON.............................................................................................................................. 6 

PROJECT RESOURCE REQUIREMENTS................................................................................................................. 7 

CONCLUSION................................................................................................................................................................. 8 

 



 1

Introduction 
 
As the cost of providing quality education has continued to rise over the past few years, many 
new methods of providing meaningful, hands-on experience to students are being investigated.  
One proposed method of improving the student-to-cost ratio is tele-learning: providing distance 
education using multimedia technologies via any combination of telephone, video-conferencing, 
or Internet connections.  The purpose of this project is to create a Java application that enables 
students to learn robotics programming via interactive experimentation.  This thesis will extend 
original work started by Ron Racine and Scott Branden as an ENSC 439 project. 
 
The goal of the REMOTE (Really Exciting Manipulator Object Tele-learning Experience) 
project is to enable students to explore and learn about programming a jointed robot.  This 
thesis project is to develop an application that achieves this goal in two stages: the first stage is a 
software simulator that allows users to program and debug a robot manipulator; the second 
stage is a client-server connection to a real manipulator which allows users to test their 
programs and view the results using CU-See-Me Internet video.  In effect, this simulator will 
give a larger number of students access to a limited resource, and the mechanism to conduct 
remote experiment in robotics. 
 
This project is of particular importance to future ENSC 439 classes, which will use the simulator 
to provide students with more access to robot programming experience at a lower cost.  To suit 
the purposes of ENSC 439, the software will be required to simulate a Scorbot ER III 
manipulator and interface via the Internet to the existing Scorbot manipulator available in the 
Engineering Science lab. 
 

Overview of Project Requirements 
 
The completed project application will consist of several subsections:  
 
• Graphical User Interface (GUI): responsible for providing the user with a way to interact 

with the simulator. The GUI will be expected to represent the state of the simulation to the 
user and allow them to edit and run the simulation, perform file operations, configure their 
preferences, and send their program to the remote server. 

• The Simulation Engine: responsible for interpreting the robot model, constructing internal 
data structures to represent the robot, and manipulating the robot’s joint angles, as specified 
by simulation commands and the robot’s inverse-kinematics. 

• Simulation File Parsers: responsible for parsing files for simulation commands, descriptions 
of the physical form of the manipulator, and pre-solved inverse-kinematics equations.  
These files control the internal model of the robot used to simulate and control the 
manipulator. 



 2

• Remote Server Communications: responsible for allowing the simulator application to 
communicate with a server, enabling the simulator to control the real manipulator remotely 
via the server. 

 
In addition to the parsers that will be created, the simulator will require a framework to allow 
feature extensibility.  This framework will ensure that additional parsers for different model 
formats and robot languages can be easily programmed and added to the application’s existing 
features. 
 
To discuss the project requirements outlined above, the main issues have been grouped into 
several subsections: Design of the Graphical User Interface, Integration of Interactive 
Programming Features, The Simulation Engine, Server Communications, and Simulator 
Generalization.  In addition to the core tasks discussed in these subsections, an additional 
subsection justifies the proposed use of the Java programming language. 
 

Design of the User Interface 
 
The original simulator, shown in Figure 1, is a stand alone Java program with a simple user 
interface, providing minimal functionality in a non-intuitive layout.  One of the main goals of the 
project will be to improve the GUI to be more user-friendly and intuitive; this includes adding 
functionality to give users the ability to control all aspects of the simulator, instead of those few 
controls presently provided. 

 

 
 

Figure 1: Original REMOTE Simulator 



 3

 
One particular aspect of the interface that may be redesigned is the current wire-frame 
representation of the robot.  The expected delivery of the Java 3D API in the spring of 1998 
could be used to replace the current wire frame model, and provide users with a clearer three-
dimensional representation of the manipulator.  However, this work cannot be undertaken until 
the arrival of the 3D API, making it a low priority for the project.  More important will be the 
proper implementation of other user interface elements. 
 
An important design issue that will need to be addressed is the interface’s usability.  Testing of 
several designs will be required to ensure that the layout and functionality of the GUI 
correspond to an average user’s intuition and expectations.  Part of the usability testing will be 
conducted in conjunction with the ENSC 439 class occurring in the 98-1 semester; this class 
will be using the simulator to complete one or more assignments, and will provide an opportunity 
to test the simulator’s interface with real users. 
 

Integration of Interactive Programming Features 
 
At present, the simulator provides no features that allow the user to edit file of simulation 
commands from within the simulator.  Simulations are currently programmed externally in a text-
editing application and then loaded into the simulator; once a simulation is loaded into the 
current simulator, the simulation cannot be stopped, once completed it cannot be rerun, and a 
new simulation cannot be loaded without restarting the simulator. This approach defeats the 
intended interactive nature of the application, and restricts the user’s learning process. 
 
Using the simulator, the user should be able to follow a typical software development cycle, 
shown in Figure 2.  A user should be able to write a program, run the simulation, and view the 
simulation results, repeating this cycle until the desired results are achieved.  All of these actions 
should occur within the simulator environment, without using external applications for program 
development. 

 

 
 

Figure 2: Ideal Simulation Program Development Cycle 



 4

 
The completed simulation environment will need to incorporate features that allow users to load, 
run, edit, rerun, partially run, and debug their programs.  The environment will need to include 
the ability to start, stop, reset, and step the simulation, and also edit the simulation program 
while viewing the results.  In addition to programming, users should also be able to debug their 
simulations; incorporation of features such as simulation stepping and perhaps the ability to add 
breakpoints to programs would permit intuitive debugging, similar to other programming 
environments. 
 
These features will be accessible to the user as a part of the GUI, allowing the user to interact 
and manipulate the underlying simulation model of the robot.  As outlined before, 
implementation of these features will need to focus on both the demands of the interface for 
usability and the ability of the simulation engine to provide the required output. 
 

The Simulation Engine 
 
The core processes of reading in robot command files, robot model definition files, performing 
the required inverse kinematics calculations, and manipulating the state of the internal model are 
the purpose of the Simulation Engine.  The responsibilities of the Simulation Engine can be 
broken down into the following five tasks: 
 
• Reading files that define the robot, and constructing the robot’s internal representation 
• Reading command files in preparation for simulation 
• Manipulating the representation in accordance with the command file and the robot’s pre-

defined inverse kinematics equations 
• Communicating with the GUI to obtain the user’s updates to the simulation file 
• Representing the current state of the model, which can be used by the GUI to provide useful 

information to the user in whichever form it deems appropriate. 
 
The Simulation Engine should not be responsible for the lower level tasks of parsing the models 
and the simulation files; it should only act as a coordinator over other ‘plug-in’ type modules 
which carry out the parsing and provide the data in the appropriate format when required.  
Similarly, the Simulation Engine should not actually do the inverse-kinematics calculations itself, 
again relying on a ‘plug-in’ module to provide the required information to manipulate the internal 
model of the robot. 
 
The reason that the Simulation Engine will act only as a coordinator is simple: by abstracting as 
many of the tasks that are outside running the simulation, we can make the simulator more 
maintainable.  The lower-level tasks of data format interpretation can be modularized so that 
future formats and models can be incorporated into the simulator without rewriting the central 
simulator; new task modules would only need to be programmed according to the abstract 



 5

model.  This marginal effort will ensure that the simulator can be easily reused to simulate other 
manipulators at a later date. 
 

Addition of Server Communications 
 
Client-server communications is a requirement of this project to allow communication between 
the simulator and the remote manipulator.  This connection will allow students to use their 
completed programs to command the remote robot via the robot server;  use of the commercial 
CU-See-Me software will allow students to view the results of their programs running on the 
manipulator via the Internet. 
 
Programming the application to set up network connections and exchange data between itself 
and the remote server is only one portion of the communication problem.  In addition to 
requiring a protocol to define the format that the commands are sent to the remote server, 
communication between the server and the robot hardware will also need to be implemented.  
For this thesis, only client side programming will be implemented, with another member of the 
REMOTE project completing the server side programming. 
 
A proof-of-concept server program has already been implemented by Sean Lavin, to show that 
it is possible to command the Scorbot hardware via a simple Java client-server connection.  
Due to Java’s inability to communicate with hardware directly, the proof-of-concept uses a 
C++ library to bridge between the Java server and the Scorbot hardware via the server’s serial 
port. 
 

Simulator Generalization 
 
Eventually, this application could be used to simulate and conduct remote experiments using 
other manipulators, and other types of devices.  With this in mind, the simulator should 
incorporate a sizable amount of abstraction in the software design; in effect, this would be a 
‘plug-in’ style architecture allowing various features of the simulator to be replaced or 
supplemented. 
 
Producing a completely general inverse-kinematics engine would be a thesis in itself; instead of 
attempting to tackle that problem, the REMOTE project will attempt to make the job of adding 
pieces to upgrade the simulator easier.  For example, if someone calculated the inverse 
kinematics solution for a four-link manipulator, they could extend the inverse kinematics engine 
by simply programming another inverse kinematics module; the simulator could then be used to 
simulate that manipulator. 
 



 6

Besides different manipulators, incorporating the ability to read different file formats for the 
simulator data should also be easy.  The data parsers include parsers for different 3D formats 
for representing the robot, and parsers for different robot languages. 
 
Producing a simulator that incorporates flexibility will require that portions of the original code 
for the simulator be updated or rewritten;  in some cases, newer features of the Java language 
will replace obsolete or ‘deprecated’ methods.  Upgrading to the new version of the Java 
Developer’s Kit (JDK) ensures that the simulator can take advantage of the newest features of 
the language, improve the application’s speed, and implement several bug fixes. 
 

Use of the Java Programming Language 
 
There are several reasons that the programming language for this project has already been 
selected.  The main reason is that the original program completed by Ron Racine and Scott 
Branden was written in Java; attempts to use what has already been done will reduce the time to 
complete the project. Features that make Java the candidate for this project include: 
 
• Java applications can be run on any platform that has an implementation of the Java 

interpreter (known as the Java Virtual Machine). 
• Java provides instant access to a collection of pre-existing networking, security, user 

interface, graphics and other libraries.   
• Java libraries are being created and improved at a phenomenal rate. 
• The use of Java means that a user is presented with familiar user interface elements. 
 
The features of Java eliminate code porting and ensure that the final product can reach the 
widest audience of users, while reducing programming outside the scope of the central task.  
Java provides a user interface that is consistent with the native platform, taking advantage of the 
user’s previous knowledge of their platform’s interface. Using Java means results are quickly 
achieved, while maintaining the flexibility required to incorporate new features as additional 
libraries become available. 
 
For the given reasons, it seems appropriate that the simulator development should continue 
using Java, extending the original simulator programmed. 
 

Project Planning Horizon 
 
The Gantt chart in Figure 3 summarizes the estimated project milestones. 

 



 7

 
 

Figure 3: Gantt Chart of Project Milestones 
 
At the start of the thesis project in January, a functional specification and a high-level design 
specification will already complete, and significant amount of time already invested in the project 
during my year abroad in Britain.  Additional time is required to add features that could not be 
added due to pending software release dates (such as the Java 3D API), to properly design and 
test the GUI, and to implement the remote communications portion of the application.  The final 
piece of work required to complete my thesis will be the drafting and revision of the thesis 
document. 
 
Project work will be supervised by Dr. John Dill (Technical and Academic Supervisor), Dr. 
Kamal Gupta (Committee Member), and Brian Fisher (Committee Member).  Other members 
of the REMOTE project will provide feedback and input to refine and revise the application.  
The evaluation and guidance of the thesis committee members and the students of ENSC 439 in 
98-1 will guide the development of the simulator to completion. 
 

Project Resource Requirements 
 
The project requires access to computing facilities capable of compiling and running the Java 
Virtual Machine and the Java compiler in a timely fashion.  For this purpose, I have already 
secured access to the Sun workstation resources available in the School of Engineering Science, 
in addition to my own Macintosh PowerBook computer.  The compiler, interpreter, 
documentation, tutorials and all other required software for Java are available free of cost on the 
Internet from JavaSoft and other corporations. 
 
Resources required for the remote server include the Scorbot ER III, the server computer, the 
video camera, and the CU See Me software.  Funding for the hardware portion of this project 
has already been provided to Dr. Dill by the Ministry of Labour and Training Innovation Fund, 
and the required hardware has already been obtained. 
 
In addition to the material resources required to complete the project, a suitable student to 
design, program, test, and document the project will be required.  This project will require a 



 8

background in object-oriented programming, preferably in the Java language, and familiarity 
with the concepts of robotics.  From my recent work experience at ICS Net, I have acquired 
close to two years of experience with object-oriented programming in the Java language, and I 
have also completed an equivalent to ENSC 438 (“Introduction to Robotics”) at the University 
of Sussex.  I believe my experience, coupled with my experience as an undergraduate 
engineering student, is more than enough to carry this project through to completion. 
 

Conclusion 
 
This project is designed to fill the immediate needs of Dr. Dill’s ENSC 439 course, namely 
providing a system to allow students to interactively program a robot simulation which can also 
be used to conduct robotics experiments remotely.  In turn, this project also seeks to 
incorporate flexibility in its design that will allow the environment to be easily updated to simulate 
other manipulators in accordance with foreseeable future requirements. The project calls for a 
redesign of the current user interface, and the addition of elements to allow users to interactively 
simulate, debug, and remotely operate a robot using the proposed improved simulator 
environment. 
 
The project timeline is being set to accommodate my year abroad at the University of Sussex, 
with the provision that additional work on the project will be required on my return. The thesis 
will be completed during the 98-1 semester, with the final thesis defense expected to take place 
at the end of the spring term of 1998. 
 
All project requirements, including required hardware, software, and the knowledge 
requirements have been addressed; the procurement of the appropriate facilities and my 
background are more than adequate to carry this project through to its objectives: to create a 
tool that enables useful robotics tele-learning. 
 


